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A class of generalized Kapchinskij-Vladimirskij solutions of the Vlasov-Maxwell equations and the

associated envelope equations for high-intensity beams in an uncoupled lattice is derived. It includes the

classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice, the distribution functions

and the envelope equations are specified by ten free parameters. The class of solutions derived captures a

wider range of dynamical envelope behavior for high-intensity beams, and thus provides a new theoretical

tool to investigate the dynamics of high-intensity beams.
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For high-intensity charged-particle beams in an
uncoupled periodic transverse focusing lattice, the beam
envelope dynamics described by the envelope equations
is an important research topic for optimizing beam qual-
ity and controlling beam instabilities. The most compre-
hensive self-consistent description of high-intensity beam
dynamics, including both collective transverse dynamics
[1–3] and longitudinal dynamics [4], is a kinetic descrip-
tion using the Vlasov-Maxwell (VM) equations [5]. In
1959, Kapchinskij and Vladimirskij [5,6] derived the
envelope equations as a rigorous solution of the VM
equations for a special distribution function, which is
now called the Kapchinskij-Vladimirskij (KV) distribu-
tion. Since then, the envelope equations have become a
very important theoretical tool for investigating the trans-
verse dynamics of high-intensity beams in uncoupled
focusing lattices [1–3,7–15].

In this Letter, we derive a class of generalized
Kapchinskij-Vladimirskij solutions of the VM equations
and the associated nonlinear envelope equations for
high-intensity beams in an uncoupled transverse focusing
lattice. The new class of distribution functions and the
associated envelope equations include the classical KV
distribution function and the associated envelope equations
as a special case. In the classical KV solution, for a
prescribed focusing lattice and line density of the beam,
the distribution function and associated envelope equations
are specified by two free parameters (excluding the initial
conditions), i.e., the transverse emittances "x and "y. The

(x, y) projection of the KV distribution is an upright ellipse
with constant density inside. The dimensions of the ellipse
aðsÞ and bðsÞ are time dependent and determined by the
envelope equations (8). In the generalized solutions
described in this Letter, for a given uncoupled focusing
lattice and line density, the distribution function and asso-
ciated envelope equations are specified by ten free parame-
ters, defined by a constant 4� 4 symmetric and positive
definite matrices �, called the emittance matrix in this

Letter. The (x, y) projection of the distribution is an ellipse
with constant density inside as in the classical KV solution.
However, the beam ellipse is allowed to rotate around the
beam centroid in addition to the pulsating dynamics of the
transverse dimensions. This extra degree of freedom is
specified by the time-dependent tilt angle �ðsÞ of the
ellipse. The generalized distribution function and the asso-
ciated envelope equations are given by Eqs. (17) and (16).
The classical KV solution is a special case of the general-
ized solutions presented here when the emittance matrix is
chosen to be

� ¼ �1 0

0 �1

 !
;

where

�1 ¼
1="x 0

0 1="y

 !

is a 2� 2matrix corresponding to the emittances "x and "y
in the two transverse directions for the classical KV
solution.
When the beam ellipse is tilted, the space-charge force

couples the x dynamics and y dynamics of a single particle.
Therefore, to construct the generalized KV solution for
high-intensity beams in an uncoupled lattice, we will first
generalize the classical KV solution to an arbitrary coupled
lattice, where the coupled dynamics can be induced by
both the external focusing lattice and the self-field poten-
tial. This most generalized solution is then restricted to the
case of an uncoupled external focusing lattice, allowing
coupled focusing force to be induced only by the self-
force. In this most generalized solution, the ten free pa-
rameters are specified by the emittance matrix �, which is a
large-scale generalization of the previous self-consistent
solution of high-intensity beams in a coupled focusing
lattice with only one free parameter, i.e., one scalar emit-
tance [16]. The case of one scalar emittance corresponds
to a beam with the same normalized emittance in the
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two transverse directions, which obviously does not
include many beam configurations for practical applica-
tions. However, generalized solutions with a general emit-
tance maxtrix � are technically more difficult to treat.
Specifically, the difficulty is associated with the calculation
of the velocity integral [see Eq. (20)] for the general case. It
turns out that this difficulty can be overcome by the tech-
nique of Cholesky decomposition for a symmetric, positive
definite matrix [see Eq. (19)]. Using this technique, we are
able to obtain an envelope equation for the most general
case. We note that Barnard and Losic [12] developed a set
of moment equations from the Vlasov-Maxwell equations
to describe beam dynamics with angular momentum in a
coupled focusing lattice. The moment formulation and the
envelope formulation given in this Letter are equivalent to
each other. In Ref. [12], a uniform density beam was
assumed, without showing an underlying self-consistent
distribution function explicitly, appealing to the general
work of Sacherer [1] to justify the assumption. An explicit
derivation of the underlying distribution function is given
in this Letter.

Our starting point is the Vlasov-Maxwell equations that
govern the nonlinear evolution of the distribution function
f and the normalized self-field potential c ,

@f

@s
þ v � @f

@x
� ðrc þ �qxxex þ �qxyeyÞ � @f@v ¼ 0; (1)

r2c ¼ �2�Kb

Nb

Z
fdvxdvy: (2)

Here, the normalized self-field potential is defined by c ¼
qb�=�3

bm�2
bc

2, where � is the space-charge potential,

�bc is the directed beam velocity in the longitudinal

direction, �b ¼ ð1� �2
bÞ�1=2 is the relativistic mass factor,

s ¼ �bct is an effective time variable normalized by
1=�bc, Kb ¼ 2Nbq

2
b=�

3
bm�2

bc
2 is the beam self-field per-

veance, and Nb ¼ R
fdxdydvxdvy is the line density.

Particle motion in the beam frame is assumed to be non-
relativistic, (x, y) is the transverse displacement of a beam
particle, v ¼ dx=ds ¼ ðvx; vyÞ is the normalized trans-

verse velocity in the beam frame, and �qx and �qy are the

focusing coefficients for the uncoupled quadrupole lattice.
The�rc term in Eq. (1) describes the self-field force due
to the self-electric and self-magnetic fields of the beam,
and it is nonlinearly coupled to the distribution function f
through Eq. (2). Equations (1) and (2) form an integro-
differential equation system, and it is in general difficult to
find analytical solutions.

Kapchinskij and Vladimirskij [5,6] discovered a remark-
able solution of the VM equations (1) and (2), which is now
called the KV distribution. The solution is constructed
from the well-known Courant-Snyder (CS) invariants
[17] for a linear focusing lattice,

Ix¼ x2

w2
x

þðwx _x�x _wxÞ2; Iy¼ y2

w2
y

þðwy _y�y _wyÞ2: (3)

Here, "x and "y are the constant transverse emittances, and

wx and wy are the envelope functions satisfying the enve-

lope equations,

€wx þ ð�qx þ �sxÞwx ¼ w�3
x ;

€wy þ ð�qy þ �syÞwy ¼ w�3
y :

(4)

In Eq. (4), the self-field force is assumed a prior to be
uncoupled and proportional to the displacement with
the defocusing coefficient �sx and �sy; i.e., �rc ¼
��sxxex � �syyey. The coefficients �sx and �sy will be

determined self-consistently from the distribution func-
tion, which is required to satisfy the Vlasov equation (1)
and simultaneously generate a linear self-field force in
order for the CS invariants to be valid. A distribution
function that satisfies both conditions is the KV distribu-
tion given by

fKV ¼ Nb

�2"x"y
�

�
Ix
"x

þ Iy
"y

� 1

�
; (5)

which obviously satisfies the Vlasov equation (1) because
it is a function of the invariants of the particle dynamics.
Here, the constants "x and "y are the transverse emittances.

The density profile projected by the distribution function
fKV in transverse configuration space is

nðx; y; sÞ ¼
Z

dvxdyyfKV

¼
8<
:Nb=�ab; 0 � x2=a2 þ y2=b2 < 1;

0; 1< x2=a2 þ y2=b2;
(6)

where a � ffiffiffiffiffi
"x

p
wx, b � ffiffiffiffiffi

"y
p

wy. This density profile in the

(x, y) plane corresponds to a constant-density beam with
elliptical cross section and pulsating transverse dimensions
a and b. The associated normalized self-field inside the
beam, determined from Eq. (2), is given by

c ¼ �Kb

aþ b

�
x2

a
þ y2

b

�
; 0 � x2=a2 þ y2=b2 < 1; (7)

which indeed generates a linear defocusing force with
coefficients �sx ¼ �2Kb=aðaþ bÞ and �sy ¼ �2Kb=

bðaþ bÞ. The KV solution reduces the VM equations
to the envelope equations given by Eq. (4) in terms of
wx and wy, or equivalently, in terms of a and b as

€aþ �qxa� 2Kb

ðaþ bÞ ¼
"2x
a3

;

€bþ �qyb� 2Kb

ðaþ bÞ ¼
"2y

b3
:

(8)

The envelope equations have become an indispensable
tool for our understanding of the dynamical behavior of
high-intensity beams.
We now show how to construct a class of more general

solutions of the VM equations and the associated envelope

PRL 110, 064803 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 FEBRUARY 2013

064803-2



equations, which include the classical KV solution as a
special case. It turns out that the class of distribution
functions that generates a linear space-charged force and
satisfies the Vlasov equation is much wider than the
classical KV distribution given by Eq. (5). As mentioned
earlier, the generalized solution projects to a rotating,
pulsating elliptical beam which induces coupled dynamics
in the transverse direction. Our strategy is to allow the
external focusing lattice to be coupled as well. In this case,
the Vlasov equation can be written as

@f

@s
þ v � @f

@x
� ðrc þ �qxÞ � @f@v ¼ 0; (9)

where

�q ¼
�qx �qxy

�qyx �qy

 !
(10)

is the matrix of coupling coefficients, �qx and �qy are the

focusing coefficients for the lattice, and �qxy ¼ �qyx are

the the coupling coefficients, which can be produced, for
example, by a skew-quadrupole component of the lattice.
Every component of �q is a function of s. The generalized

KV distribution that solves the Vlasov-Maxwell system (9)
and (2) projects to a rotating, pulsating beam with elliptical
cross section in transverse configuration space with con-
stant density inside the beam. Both the transverse dimen-
sions a and b and the tilt angle � are functions of s ¼ �bct,
in contrast with the pulsating upright elliptical beam cross
section for the classical KV solution.

The rotating, pulsating beam with elliptical cross section
in transverse configuration space, and constant density
inside the beam, generates a coupled linear space-charge
force of the form

�rc ¼ ��sx; �s ¼
�sx �sxy

�syx �sy

 !
; (11)

where �sxy ¼ �syx, which allows us to apply the

generalized CS theory [18–20] for the coupled transverse
dynamics. The exact form of �s will be determined self-
consistently [see Eq. (21)]. We now use the generalized CS
invariant to construct a generalized KV solution of the
Vlasov equation (9), which also projects to a rotating,
pulsating elliptical beam with constant density inside the
beam. In this manner, a self-consistent solution of the
Vlasov-Maxwell equations (9) and (2) is found for high-
intensity beams in a coupled transverse focusing lattice.
For a charged particle subject to the coupled linear focus-
ing force and the coupled linear space-charge force

� rc � �qx ¼ ��x; � ¼ �q þ �s; (12)

the generalized CS invariant is given by [18–20]

I� ¼ zTQTPT�PQz; (13)

where z � ðx; y; vx; vyÞT , � is the constant 4� 4 emittance

matrix, which is symmetric and positive definite, and

superscript T denotes transpose. Here, P and Q are 4� 4
symplectic matrices determined by a 2� 2 envelopematrix

w ¼ w1 w2

w3 w4

 !

as follows:

Q ¼ ðw�1ÞT 0

� _w w

 !
; (14)

_P ¼ P _�; _� � 0 �ðw�1ÞTw�1

ðw�1ÞTw�1 0

 !
: (15)

The 2� 2 envelope matrixw is determined from the matrix
envelope equation

€wþ w� ¼ ðw�1ÞTw�1ðw�1ÞT: (16)

The P matrix defined by w is a rotation in the 4D phase
space, i.e., P 2 SOð4Þ, which is a generalization of the

phase advance to higher dimension, and _� is the corre-

sponding generating angular momentum, i.e., _� 2 soð4Þ.
The matrix product QTPT�PQ can be viewed as the
beam matrix. It is symmetric and positive definite because
� is symmetric and positive definite. Its determinant is
constant, i.e., jQTPT�PQj ¼ j�j, due to the fact that P
and Q are symplectic. This fact has also been verified
numerically in the numerical example given near the end
of this Letter.
Since I� is an invariant of the particle dynamics, any

function of I� is a solution of the Vlasov equation (9).

However, in order to solve the Vlasov-Maxwell equations
(9) and (2), the distribution function must generate the
coupled linear space-charge force of the form in Eq. (11).
For this purpose, we select the distribution function to be
the following generalized distribution:

f ¼ Nb

ffiffiffiffiffiffij�jp
�2

�ðI� � 1Þ: (17)

Here, Nb is the line density which is a constant. To be
consistent with the assumption that the space-charge force
is linear, it is necessary to verify that this distribution
function indeed generates a linear space-charge force.
The number density in configuration space is nðx; y; sÞ ¼R
dvxdvyf. The velocity integral here is much more diffi-

cult to calculate than in the classical KV case, because I�
depends on the phase advance matrix P. The special tech-
nique required here is the Cholesky decomposition. For a
symmetric, positive definite matrixM, it is always possible
to uniquely decompose it into the form

M ¼ LTL;

where L is a lower triangular matrix. This is the Cholesky
decomposition. In the present case, the matrix product
QTPT�PQ is symmetric and positive definite and its
Cholesky decomposition is
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QTPT�PQ ¼ LTL; (18)

L ¼ RT=2w�T 0

D�1=2CwT �DT=2w DT=2w

 !
; (19)

where superscript 1=2 denotes the square-root operation of
a matrix. For a symmetric and positive definite matrix M,

its square root is defined by M1=2MT=2 ¼ M. The matrices
D, C, and R in Eq. (19) are related to the phase advance
matrix P and the emittance matrix � as follows:

A B
C D

� �
� PT�P; R � A� BD�1C:

The R matrix is known as the Schur complement of D.
With the help of the Cholesky decomposition, we intro-

duce a coordinate transformation in the velocity space,

V T ¼ ðVx; VyÞ ¼ ðD�1=2CwT �DT=2ÞxþDT=2wv;

where x � ðx; yÞT and v � ðvx; vyÞT . The Jacobian of the

coordinate transformation is

dvxdvy ¼ 1

jDT=2wj dVxdVy:

The velocity integral in Eq. (2) can then be carried out in
closed form as

nðx; y; sÞ ¼
Z

dvxdvyf

¼
Z

dVxdVy

Nb

ffiffiffiffiffiffij�jp
�2jDT=2wj�ðx

Tw�1Rw�Tx

þ V2
x þ V2

y � 1Þ

¼
8<
:NbjRT=2w�Tj=�; 0 � xTw�1Rw�Tx< 1;

0; 1< xTw�1Rw�Tx:

(20)

As expected, the beam density profile in the (x, y) plane
is indeed a tilted ellipse with constant density inside.
The beam ellipse is given by xTw�1Rw�Tx< 1, whose

area is�jw�1Rw�Tj�1=2 ¼ �jRT=2w�Tj�1. The transverse
dimensions aðsÞ and bðsÞ and the tilt angle �ðsÞ of the
ellipse are determined by the eigenvalues (	1, 	2) and
eigenvectors v1, v2 of the matrix w�1Rw�T as

a �
ffiffiffiffiffiffiffiffiffiffiffi
1=	1

q
; b �

ffiffiffiffiffiffiffiffiffiffiffi
1=	2

q
;

E ¼ cos� sin�
� sin� cos�

� �
� ðv1;v2Þ:

Here, E is the matrix defining the rotation of the ellipse
relative to the upright position. Then, the self-force can be
expressed as

� @c =@x
@c =@y

� �
¼ ��s

x
y

� �
;

�s ¼ �2Kb

aþ b
E

1=a 0
0 1=b

� �
E�1:

(21)

The coupled linear space-charge coefficient �s is thus a
function of the envelope matrix w and the constant emit-
tance matrix �.
When Eq. (21) is substituted back into Eq. (12), the

envelope equation (16) becomes a closed nonlinear matrix
equation for the envelope matrix w. Therefore, we have
succeeded in finding a class of self-consistent solutions of
the Vlasov-Maxwell equations for high-intensity beams in
a coupled transverse focusing lattice. The solution reduces
to a nonlinear matrix ordinary differential equation for
the envelope matrix w, which determines the geometry of
the pulsating and rotating beam ellipse. Compared with the
classical KV solution in a uncoupled lattice, the unique
feature of the generalized solution is that the beam ellipse
is rotating with time. This feature persists even when the
external focusing lattice is the standard uncoupled lattice.
In this case, the generalized solution represents a class of
solutions larger than the classical KV solution. Even
though the focusing lattice is uncoupled, the space-charge
force can still couple the 2 degrees of freedom in the
transverse direction. It is a pleasant surprise that an
uncoupled focusing lattice can actually confine and focus
a rotating and pulsating high-intensity beam in a self-
consistent manner. This new family of solutions can be
used as an effective beam smoothing technique for accel-
erator applications where smooth illumination is required,
such as in the case of heavy ion fusion and medical
accelerators.
Because the beam is rotating in the transverse plane, the

conventional emittances "x and "y are no longer constants

but periodic functions of s that take on their minima when
the beam ellipse is ‘‘upright,’’ i.e., in normal form in the
transverse plane. The dynamics of "x and "y can be

obtained through the following equations once the enve-
lope matrix w is solved,

"2x ¼ 4½hx2ihv2
xi � hxvxi2�; "2y ¼ 4½hy2ihv2

yi � hyvyi2�;
(22)

where h
i � R
dxdydvxdvy
f=Nb is the phase space av-

erage of a function 
.
We now give a numerical example of the new class of

solutions in an uncoupled focusing lattice. We consider
the case of a high-intensity beamwith normalized self-field
perveance Kb=" ¼ 0:1 in a focusing-off–defocusing-off
latticewith normalized quadrupole focusing field amplitude
�̂qS � qbB

0
q=�bm�bc

2 ¼ 15 and filling factor � ¼ 0:30,

where S is the lattice period. The emittance is chosen to be

� ¼ I �2

�2 I

� �
and
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�2 ¼ 0 0:5
0 0

� �
:

Plotted in Fig. 1 is the beam cross section as a function of
time for two lattice periods. It is clear that as the beam
dimensions pulsate with time, the beam also rotates in the
transverse plane. The dynamics of beam dimensions and tilt

angle are also plotted in Fig. 2, which indicates that the
dynamics of pulsation and rotation has a period of 3S.
In conclusion, we have derived a class of generalized

KV solutions of the VM equations and the associated enve-
lope equations for high-intensity beams in an uncoupled
lattice. It includes the classical KV solution as a special
case. For a given uncoupled lattice and beam line density,
the distribution function and the envelope equations are
specified by ten free parameters. The class of solutions
derived here captures a wider range of envelope dynamics
for high-intensity beams, and thus provides us with a new
theoretical tool to investigate the dynamics of high-intensity
beams in an uncoupled transverse focusing lattice.
This research was supported by the U.S. Department of
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FIG. 2. (a) Beam transverse dimensions and (b) tilt angle
defined by 0 � xTw�1Rw�Tx< 1.
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FIG. 1 (color online). Beam cross section defined by 0 �
xTw�1Rw�Tx< 1 for 0 � s=S � 2.
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